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o |. Societal objective of establishing a climate benchmark:
The essential responsibility to current and future generations to put in place a
benchmark climate record, global in its extent, accurate in perpetuity, tested
against independent strategies that reveal systematic errors, and pinned to

international standards on-orbit.

* |l. Societal objective of the development of an operational

climate forecast: The critical need for climate forecasts that are tested and
trusted through a disciplined strategy using state-of-the-art observations with
mathematically rigorous techniques to systematically improve those forecasts.
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Changing Climate of Prediction

From “Changing Climate Of Prediction”,
Cox and Stephenson, Nature, 2007

“We can therefore envisage a climate diagnosis
and prediction system that assimilates data

into a climate model not only to define the initial
conditions for decadal projections, but also

to refine estimates of the key internal model
parameters that influence climate sensitivity”
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The statistical predictability of climate is still an
open question.

Forecast

The information content of an observing system
can help evaluate predictability through the
change in entropy, H, between a forecast, x. ,
with and without the observing system, y,
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DelSole and Tippett, 2007

AH = J.p(xr) Inp(x)dx - J‘p(XT ly )Inp(x |y )dx

Similarly, the information content of
CLARREO spectral radiances, s,
relative to the geophysical state, y,,
that produced those radiances can
be described by

The goal is to maximize the information
content of CLARREO radiances

in order to improve the predictability of
climate forecasts.

AH | = jp(yt) Inp(y,)dy, - fp(yt 's)Inp(y,Is,)dy,
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climate feedbacks

*The IPCC indicates that climate feedbacks,
and in particular, cloud feedbacks remain the
largest source of uncertainty for climate
prediction

2XCO, Sensitivity [K]

*The main climate feedbacks are the radiative
response of the hydrological cycle to
anthropogenic forcing:

-Water vapor feedback

*Cloud feedback

*lce/Snow feedback

Stephens/Soden, J. Climate 2005

P B R These feedbacks are coupled to each other
sl s §i i and to general atmospheric circulation
ot 5 —1 *Water vapor and clouds are distributed at
: ; unresolved GCM scales.

Feedback ype *However, regional climate models could help

Bony et al. J. Climate, 2006 5
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Uncertainty in climate feedbacks

CLARREOQ design
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Information content analysis Virtual observations
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Does the information content from
CLARREO reduce climate projection
uncertainty within mission lifetime?
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GCSS/WGNE Pacific Cross-section Intercomparison (GPCI) is a
working group of the GEWEX Cloud System Study (GCSS)

Models and observations are analyzed along a transect from
stratocumulus, across shallow cumulus, to deep convection

Models: GFDL, NCAR, UKMO, JMA, MF, KNMI, DWD, NCEP, MPI,
ECMWF, BMRC, NASA/GISS, UCSD, UQM, LMD, CMC, CSU, GKSS
7
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. Radiative response of the hydrological cycle
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Radiative response from the surface
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The variation in surface emissivity in the IR is small
but relatively underexploited

Ice has a strong visible signature with some
spectral dependence

International Geosphere Biosphere Programme (IGBP)
land use surface classification (Loveland and Belward, 1997).

14
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Water Vapor: the ties that bind

H20 radiances
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Water vapor columns have been
retrieved in the visible,
Mierech et al, ACP 2008

*Water vapor has a strong absorption throughout both
the far-infrared, infrared, and visible bands

*Shown for H20-only absorption
*Varies across the GPCI region.

*Could be used to cross-calibrate Vis and IR radiances

15
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Peering through the clouds
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In order to improve climate predictions, the uncertainty in the radiative
response of the hydrological cycle to anthropogenic forcing must be
reduced

The far-infrared, infrared, and visible spectra are sensitive water vapor,
clouds, and snow/ice: the key variables that drive climate feedbacks
— Suggests that the information content of the combined spectra is higher than
individual regions.
The spatial scales over which water vapor is distributed and clouds are
formed are much less than 100 km
— Impact of finer spatial resolution of observations on predictability need to be
investigated
WRF simulations over the GPCI region provides the necessary variation in
cloud regimes to assess the information content of individual and
combined spectral regions.

We can assess the combined information content of the visible, IR, and
GPS spectral regions with respect to individual regions.
We plan to investigate the radiative response to different cloud regimes

Forcing the WRF model with different GCMs under climate change
scenarios could provide insight into the interaction of dynamics with
clouds

We hope to extend this analysis to include different viewing angles, i.e.,
off-nadir, and polarizations. 17
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